Archaebacterial histone-like proteins. Purification and characterization of helix stabilizing DNA binding proteins from the acidothermophile Sulfolobus acidocaldarius.
نویسندگان
چکیده
Four DNA binding histone-like proteins have been purified from the nucleoid of the acidothermophilic archaebacterium Sulfolobus acidocaldarius to homogeneity employing DNA-cellulose chromatography and carboxymethylcellulose chromatography. The molecular weights of these proteins are in the range 8,000-12,500. Immunoblotting results suggest that a few antigenic determinants are common among these proteins which could not be detected by immunodiffusion. Spectroscopic properties of the proteins have been studied. The amino acid compositions of these proteins show both similarities and differences with histones and prokaryotic histone-like proteins. All of the four proteins bind native and denatured DNAs and single stranded RNA with differing affinities. Three of the proteins, denoted by HSNP (helix stabilizing nucleoid protein)-A, HSNP-C, and HSNP-C', show physiologically significant, strong, and synergistic effects in stabilizing duplex DNA against thermal denaturation with Tm increases in the range of 15-30 +/- degrees C.
منابع مشابه
Rapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملFlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein
Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic ...
متن کاملChemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
The energy-transducing mechanism of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius DSM 639 has been studied, addressing the question whether chemiosmotic proton gradients serve as an intermediate energy store driving an F0F1-analogous ATP synthase. At pH 3.5, respiring S. acidocaldarius cells developed an electrochemical potential of H+ ions, consisting mainly of a proton gradi...
متن کاملSmall abundant DNA binding proteins from the thermoacidophilic archaeon Sulfolobus shibatae constrain negative DNA supercoils.
Major DNA binding proteins, designated Ssh7, were purified from the thermoacidophilic archaeon Sulfolobus shibatae. The Ssh7 proteins have an apparent molecular mass of 6.5 kDa and are similar to the 7-kDa DNA binding proteins from Sulfolobus acidocaldarius and Sulfolobus solfataricus in N-terminal amino acid sequence. The proteins constitute about 4.8% of the cellular protein. Upon binding to ...
متن کاملSequences of the 5S rRNAs of the thermo-acidophilic archaebacterium Sulfolobus solfataricus (Caldariella acidophila) and the thermophilic eubacteria Bacillus acidocaldarius and Thermus aquaticus.
We have determined the nucleotide sequences of the 5 S rRNAs of three thermophilic bacteria: the archaebacterium Sulfolobus solfataricus, also named Caldariella acidophila, and the eubacteria Bacillus acidocaldarius and Thermus aquaticus. A 5 S RNA sequence for the latter species had already been published, but it looked suspect on the basis of its alignment with other 5 S RNA sequences and its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 264 29 شماره
صفحات -
تاریخ انتشار 1989